
November, 1996

Advisor Answers

Visual FoxPro

Q: I have a form (MyForm) that has a grid (MyGrid) on it. The RecordSourceType for the
grid is "Alias" and the alias is a view (MyView).

The view is created using:

Create SQL view MyView as ;
 select * from MyTable where <conditions>

If I create the view first, then USE it, then run the form, all is well.

Now my question: I want to be able to recreate the view on the fly with user supplied

conditions from the same form the grid is on (MyForm) and then have the grid update to
reflect the new view.

I've tried a number of things that don't work. Browsing the view makes it obvious that
the view is not updated at all until it is closed and re-opened. When I close the initial

view, the data disappears from my grid. When I then USE the modified view (with the
new criteria) I can not, for the life of me, get the grid to refresh, although browsing

again reveals that the new data is indeed there.

Any ideas are most appreciated!

–Ken B. Matson (via the Internet)

A: Grids are picky about their RecordSource. When you close the table or cursor a grid is

based on, the data clears out. Re-opening a table or cursor with the same alias does not

refill the grid. What's going on here is that the grid is tied in some way to the actual
open table or cursor, not just to the name. (See this month's Tips, Tricks and Traps,

however, for one workaround to this problem.)

There is a way to re-hook the grid to the alias - reset RecordSource like this:

THIS.RecordSource = THIS.RecordSource

However, in most cases, this isn't good enough. When you change a grid's

RecordSource, the grid loses all customization that you've done. Any custom controls
you've added or colors you've set or method code or anything else is gone. Most of the

time, you'll want to keep those things, so another approach is needed.

This sounds like a perfect place to use a parameterized view. Let's review the basics of

views.

A view is a query definition stored in a database. When you USE a view, VFP executes

the query and creates a cursor containing the data specified. Ordinarily, a view definition
is static. Given the same set of source data, it returns the same subset each time you

open it.

However, views have a feature that makes them extremely powerful - the ability to

accept parameters. In the WHERE and HAVING clauses of a view, you can precede a
variable with a question mark (like ?MyVar) to indicate that that variable is a parameter

to the query.

If the variable exists when you open the view, there's no difference between using a

parameter and using any other variable. The value is substituted into the query before
execution.

But, if the variable doesn't exist when you open the view, VFP prompts you for a value.
While you wouldn't usually want end-users to see the View Parameters dialog, it's

extremely handy while you're testing.

Here's an example of a parameterized view. We'll create a special database to hold the

definition, but it could go in an existing database, either the one which contains its
source tables or any other. This view chooses all the employees in a specified country.

CREATE DATABASE TestView
CREATE SQL VIEW EmpsByCountry AS ;
 SELECT * FROM TasTrade!Employee ;
 WHERE Country = ?m.cCountry

To open the view:

USE EmpsByCountry

Since the parameter cCountry doesn't exist, the View Parameters dialog prompts us for

a value. Enter "USA" (without the quotes), then Browse the result. You'll see all the
employees who live in the United States. Now close the view and open it again, but this

time specify "UK" in the dialog. Now you get all the employees in the United Kingdom.

But we can do better. Close the view and open it again. This time, leave the dialog blank

- just choose OK. Browse the result and you see all employees. FoxPro's partial string

matching here means that every record matched the empty string. (If you keep ANSI
set ON, you'll need to SET ANSI OFF for this example to work.)

Finally, let's create the parameter and then open the view:

cCountry = "France"
USE EmpsByCountry
BROWSE

You see all the employees in France. To get all employees, just set cCountry to "" before
opening the view.

But we're still opening and closing the view to change which records it shows.
Fortunately, we don't have to do it that way. The REQUERY() function tells a view to go

back to the original source and refill itself based on its current parameters and the data

now available at the source. As before, if the parameter exists when you issue
REQUERY(), its current value is used. If not, you're prompted for a value. Try this:

cCountry = "USA"
USE EmpsByCountry

BROWSE
* Leaving the Browse visible
cCountry = "UK"
?REQUERY("EmpsByCountry")
cCountry = ""
?REQUERY("EmpsByCountry")
RELEASE cCountry
?REQUERY("EmpsByCountry") && This time, there's a prompt

You can base your grid on a parameterized view and simply REQUERY() the view each
time the user changes the conditions. Put all the possible conditions into the view's

WHERE clause. Let the user specify a value for each parameter.

The one case where this approach may be a problem is when some conditions are not

based on character values. Comparisons of other types don't automatically match the
empty value, so if you need to match an exact value, you'll have to be a little more

creative in the query. For example, if you want the user to be able to specify employees
born on a certain date, but that condition is optional, you'll need the WHERE clause to

read something like:

WHERE EMPTY(?dBirthDate) OR Birth_Date = ?dBirthDate

Usually, however, conditions involving dates or numbers won't need an exact match, but

will involve inequalities. Again, a little creativity in the WHERE clause will let you express
such conditions so that they're evaluated only when you want them to be.

–Tamar

